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The cusp conditions are derived which describe the
behavior of the wave function at the singularities of the Coulomb
potential corresponding to the coalescence of two or more
particles. In this derivation, the wave function is not
spherically averaged; the fixed-nuclei approximation is not
required; and the wave function may have nodes at the singular
points. 1In addition to the gemeral treatment, the cusp
conditions for diatomic molecules are discussed in three

different coordinate systems.
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I. Introduction

. . 1% .
Let us consider a spatizl wave functionm, I(t"[z’"‘,ru\.,
which is an exact solution of the N-particle, non-relativistic

\1
Schrodinger equation,

(H-E)Z =0. &)

Here, the Hamiltonian, H =T + V, is the sum of the kinetic .
energy operator, T, and the potential energy, V. The potential
energy is the sum of Coulombic terms and is thus singular where
any two particles coalesce. Now, Kato1 has proved. that E is
everywhere bounded. Hence, E® and H& are everywhere
bounded, and the singularities of V must be exactly cancelled
in H§=(T+V)§ . This cancellation will occur only if K 2
has cusps (or nodes) at the singular points of V. We thus

define the cusp conditions as descriptions of the proper

behavior of _§ at those singular points.
For an N-electron atom in the heavy-nucleus approximation,

Katol proved the following cusp conditioms:
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* All spin dependence is omitted until Section VI.



Here, \(;2- is the distance between the coalescing particles 1

2
and 2; @ 1is E averaged over a small sphere about the

singularity; and \‘ is a constant. At an electron-electron
singularity, Y-_: 1/2. , while at a nucleus-electron singularity,
\‘ = -Z., Here Z 1is the nuclear charge.

Bingel2 has integrated Kato's result and removed the
spherical average restriction by adding an angular dependent

term to obtain

\
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where

Ui = (zzi)ﬂfo/@)( " - \(ﬁ’/ﬁz ‘

‘14;.,_ depends on the other particles and is not fully specified
by the behavior of § at f"z‘-:o . Eq. (3) is valid for
molecules as well as atoms, but it is valid only in the fixed-
nuclei approximation, and it does not apply if § has a node

at ‘(‘.,L:O . From Eq. (3) Bingel derived the cusp conditions

on the first order density matrix and the probability density.
Steiner3 has also derived the cusp conditions on the probability
density of an N-electron atom. Hirschfelder4 has presented a method
for removing electron-electron singularities from the Hamiltonian,

but it has limited applicability since the resulting Hamiltonian




s

is not Hermitian.

In our study, the cusp conditions are derived directly by
solving the Schrgdinger equation where two particles are very
close together. The fixed-nuclei‘approximatian and angular
averaging are not required, and nodes in gi are allowed.

As a special case we discuss the cusp conditions in confocal
elliptic coordinates for fixed-nuclei diatomic molecules.
Then, we consider the coalescence of three or more particles
and generalize our two-particle results to find many-particle
cusp conditions which are sufficient to insure removal of all
singularities involved. No difficulty results from the
inclusion of spin in the wave function.

The satisfaction of the cusp conditions should improve an
approximate wave function. Indeed, an approximate wave function
must satisfy the cusp conditions to give good values for either
the charge density near the Coulomb singularities or the
field gradient ( o€ VE:s ). In addition, the removal of the
singularities is probably particularly important in perturbation
theorys., But the satisfaction of the cusp conditions does not
seem to greatly affect the energy calculated by variational
treatments. Roothaan and Wbiss6 carried out Hartree-Fock
and Rayleigh-Ritz energy optimization calculations on Helium
using correlated orbitals of several forms. The values of ‘x

which they obtained from their wave functions converged




very slowly toward the correct values as more general orbital
forms were chosen. Similar slow ccnvergence of the value of ]r
was observed by Kolos and Roothaan7 in their calculations of
correlated orbitals for the H2 molecule. 1Ir fact, the
convergence is so slow that, as Pekeris8 ncted, his extremely
accurate, 1078-term Helium wave function still has a 5 per cent
error in its electron-electron value of 75 . However, Kim,
Chang, and Hirschfelder9 found that imposing the cusp conditions
on a Guillemin-Zener wave function for H; did not raise the
calculated energy significantly. And Conroylo used the cusp
conditions to restrict his choice of wave functions in his

variational calculations of the energy of a number of small

diatomic molecules.

II. Derivation of the Cusp Conditions

We derive the cusp conditions by expanding the Schrgdinger
equation about a singular point of the potential, V. Let us
begin by putting the equation into a form which simplifies
the expansion. In a space-fixed coordinate system the N-particle

1"
Schrodinger equation is

Ry Z.Z; _glg=o0. 4
['iZ'm"Y + 2y E]Q “
i=1 1=4<4 J




Eq. (4) is in atcmic units: the distances, Y;; , are in
units of the Bohr radius, the masses, m; , are in units of
the electron mass, and the charges, ;Ei , are in units of the
proton charge. Let us focus attention on particles 1 and 2
(which could be any two of the N particles) by transforming
to their center of mass, 9';1‘_"("!:! +ml‘—‘2)/('m|+ml\ )

and relative, 'ru: r.-rz ) coordinates.* We leave the

coordirnates of particles 3,..., N unchanged. Then,

Y = 2L B LG, o

2hts2
'.‘ L X N
where /'z: m;ﬂ’(n,-nmk) s g.: L %?.—X,) 9 and.

- jr- S e v o . And with all dependence on
Ye=1? A(Tia)x .
particles 1 and 2 written explicitly, the Schrodinger

equation becomes

N
-~ _ ‘;72 —--1-‘;;2- __1_' A +i§é;l
Almpmg) T Ry ;;—2' ¢ T

N § =0. (6)
2;(%+Z= +£ ZZ; _E
| §=3 4% sy J

*1f Eq. (4) were the electronic Schrgdinger equation of
an atom or molecule in the fixed-nuclei approximation,
the coordinates would already be the relative coordinates
for nucleus-electron singularities.



To consider Eq. (6) near the singular point, =0 let
particles 1 and 2 be within an arbitrarily small distance
of each other (Of-_ i & é) , but let all other particles
be separated (é(( Qja for all [£¢ 44 with 3é‘jé~),
On this interval, Y;z':o is the only singular point of V. If
we now examine Eq. (6) and retain explicitly only those parts
which will be of lower order in ¥j; than § , it is

clear that

[":;",,W - 22, +0(e)) [ =0 ™

where 0(6“) implies terms of order n and higher in N2
To conveniently expand I , let Y2 be expressed in

spherical polar coordinates (Y;,..’ aﬂand ‘Pu) . Then,

Y .,z - s
[SE; +Z2 3 - L -%YK.\,O(e)]ﬁ:O, ®)
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where K: Z.'Zz 42 and

1__ _ _)_ =" _ 2
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The spherical harmonics, th(ai)‘Pn\ , are the only bounded

2
eigenfunctions of x . They satisfy the condition,




Izz_m=,t(,£+|) yl"l . The %ﬂ span. the angular space

of Eq. {8). Hemnce, E can be written as the sum

$= ' ﬁ‘n(r"‘) Xm(en»qtz) . (9)

20 wm=-f

When this sum is substituted intc Eq. {8), the linear
independence of the y‘n requires that the ccefficient of

each ‘Yln ir. the resulting sum is zeru:

A
2y ) _2K 0 =
23, -0 =0 o

The point fuso is a regular singular point of this second
order differential equation (10). Therefore; Eq. (iC) must

. 1z
have at least one solution of the form,u’ ‘

o
'ﬁ.,,,(ﬂa) = Z wk;th&‘z 2 (115
=0 .

where u"‘;bﬁ#: O ;s in general. It should be remembered

that I_—_‘ I( r') ere rﬂ) . Hence; the “’k; l;f u’k Y 'SF:’ ’rh-u,]:v)

are bounded, continuous functions of the positioms of the
other particles. Now if we substitute this sum into Eq. (10)

and collect powers of Yy

9 it
Z [{(&: k) k) -1(‘2“)3 wk;;;.zk%-l;!:' O(wk—z',ln)] Y}:g 0.
k=o



Due to the linear independence of the powers of Y‘IZ on the
interval O& Vig & € , the coefficient of each power must
be zero, and we get explicit expressions for two recursion

relations,

Z 0(1,"("(;,,,"’ ') “‘/l(l"")} wa;l'm= O P (12)

2 Gyt (At 2) LD Wy, g =2K Woyer Oy

The satisfaction of these two relations insures that both

the \(.‘;7' and the f:;‘ singularities are removed from the
equation. TFrom Eq. (12), either a(lm=,t or a(lﬁ‘#-(l*‘).
But G(sz —(I'H) must be rejected as it produces a solution
which is unbounded at ‘(,‘z:.O . Setting a&mf-l in

Eq. (12) and Eq. (13), we obtain a solution for £¢,‘m B

%n’): Waytm T2 { I+a—'-f‘—) G, + 06, aw

In fact, for any allowable ,l , the function £¢,m is the
only bounded solution of Eq. (10). This can be easily
demonstrated by using the Wronskian method13 to construct the

other solu"i;ion.




Now, let m = be the smaliest value of l for which
" o
wo",‘#= O . Then, as ([;20 , §_ —-)f'n . Thus, if
MYO , the function ® has a node at Yj4,=0O ; and if
n = 0, the function § has a cusp at Y,=O 3 In either

case the cusp conditions, the behavior of _§ near \’;L‘—‘O s

are specified by I itself, which is

-

i Zw ,,\,,,\("(q1 (A H-Z dm} +

ma-nN

B as)

M Z“’w.m ) +0C)

m=—{n#) ‘ ' \ .

L

These cusp conditions can also be written in a differentiated

form analogous to Kato's re=uit {Eq.{2))
g 1 s

(16)

{ g W, nu,mY.,. By ‘P,)
o | B e D) -
Mm+1) Z W, 'ﬂ’myn (9.1’ 'z) Yz

mza-n

!

ere (‘ru. I)ri-o ii Wosnm \/ (a"' %),

m=-n
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For the special case of n = 0 , the cusp conditions can-
be written more simply. Setting n = 0 in Eq. (15), we see
that

e = (B),, -

If we also write the spherical harmonics in their real forms,
we have

- b

\“"lez 12 Y2 + (‘lt(u'zw 9"'“4,‘1 +

B=(8),_

A G (Un)2in Bi2inTr, + Gl 0081 + 0(€) 1,

o

where the functions (un)"(gl—z)rh""arﬂ) are given by

(u;g)x = (2—?)'& (itjo;a;l - wo;s,t) ,
wo;oo

etc.., The differentiated form of the cusp conditions is thus
igﬁza/qz‘*(Lhz)x4&n£%£u°chz'+

. | V (18)
(?..é\ = ;qun)‘f;ne,lm .t (L(u)}cm,e,z @)ﬁ{-o .

T
12 Y.\l___ ¢ “ .




(We note that 2‘22/4,1 reduces to the \‘ of Eq. (2) in
the fixed nuclei approximation.) Since f;zme.,_m‘?u.*' %2 9
etc., we can also write Eq. {17) in terms of vectors. This

gives

§ =(§)‘ [L"Z.za}‘lzvl‘z +&lz.!:2 +O(€z)] > 49)
120

which is Bingel's result (Eq. (3)).

I1I. Diatomic Molecule Cusp Conditions

In treating diatomic molecules, it is convenient to know
the cusp conditions in additional coordinate systems. In this
section we present the nucleus-electron cusp conditions in
confocal elliptic coordinates, inter-particle coordinates, and
spherical polar coordinates for the special case of the

N-electron, fixed-nuclei diatomic molecule.

A. Confocal Elliptic (Prolate Spheroidal) Coordinates14

The cusp conditions can be obtained in different coordinate
systems by making a change of variables in Eq. (15). However,
in the case of confocal elliptic coordinates, it is simpler
to derive the cusp conditions directly. Because the derivation
is similar to that given in the previous section, we present

only a summary of the results.

11




We first write the electronic Schrgdinger equation in
confocal elliptic coordinates and then expand it abcut a
nucleus-electron singularity of the pcotential, V. The confocal
elliptic coordinates of the 1ith electron are {L:(YL,(“'T"-P)/R-)
7Zi=(Q°(‘QP)/R , and ?‘: . Here o€ and ﬂ are the
two nuclei, R is the internuclear distance, and Q is the
azimuthal angle. The ranges of the variables are: |<& &L-O 9
—t< 7& £] , and O% ‘E-f 2T . 1In these coordinates,

4]
the electronic Schrodinger equation is

N

2 {Av-Ree B e a%§§ )
+ ZN: %S - E ’
I=£<3' 20)

where

— LG 2
V R"(f %) 2%& ,)_- +3('-7% 1ia)(ﬁ-v;l)ng’ D

Now, let electron 1 be very close to nucieus & (If%lfH'é
and =) é% Q—H—é) , but let the other electrons be
separated from all other particles ( €L f‘?_%z ,

for all ¢») , and €< Y':, for all i and j 3 but any
R ). Then, in this region, f.:t)'?':—[ is the

only singular point of V. If we write explicitly

12



only those parts of Eq. {20) which will be of lower order in €

than E , we find that

-2 -01 %7 ("71)95 ) 07.‘)} q

G =0.
) +R(ZaZ), ~R(ZZN, + OF) :

g - (22)

Eq. (22) is separable on our region. We let 1=¥(§|)N(Y.)Wﬂ)

and obtain the following three equations:

[ 3' +'}7|2] = O 9 (23)

[ G- 9 +R(ZA*ZP)& + "'0“)] (e

(24)

(30093, -2 R Z)y -3+ 0ON50.25

Here ')n" and /\ are separation constants. The solutions of

the ﬂ equation are

(26)

LHn((PO: Ammmq’, + Bmmm‘ﬁ p)

13



where m = 0,1,2,...480 . The only bounded solutions of the
p and 7, equations are cbtained by expressing X'mx as

a series in (f,-»e) and N'mh as a series in (H-)z.)

These solutions are:

)( =( l) |-§W3G ,)+0(e")] (27)

2 Gm+Y)

and »

N‘»\;_- (H‘Z\ [ {_i ?ﬂ(mﬁ) -R (24('%\ +)z (HJZ ) +O[6’)] . (28)

2,(m+1)

In general, § will be a linear superpc=ition of such
solutions. If n 1is the smallest m for which Am and Bm

are not zero, the solution and the cusp conditions are given by*

§=(€r‘3% ( l+>g,\ l -—11(ma)+R(2(+z§\+A
%H ucwm(’ +
+ {26 -R(ZL Z) W1 || By simn 4)

| Z{n+1)

A RAEL +1
+(1r')‘(~z)73f[Am94(n+n)<R+ B dintdf] +OC™)
(29)

* The solution for electron 1 nesr nucleus P ig obtained by

simply changing ?‘ to =%, and R(Zo(_zﬂ) to -R(ZZ%) in this

equation. The §, term- are unchanged.




Here Am( l;%i‘,,) and 81"(__,_,“’,1‘”) are bounded, continuous

functions not specified by the behavior of § at the singularity.
If M>O0 in Eq. (29), @ has a node at ?t:"-'(*:-'°

But if n = 0, then § has a cusp which is described by

E:'(I [l éR(Z“+?P)+>‘5(f*“)+§ R(?£§)+A},‘.11— 4
Z"'

+(7yf")h('+7ml2[pq““’%* 61"‘:"(?9] +0€). (30

Here (é\fi—l.‘: Ao . If n =0, and also E#Q(¢|))

P
then the cusp conditions in confocal elliptic coordinates can

be written in the simple differentiated forms,

(32)... = HHREZN @)y > o
i 7

7;—-1

and

Y]
D‘Z) —‘ = 25—>‘+R(Zd—zp)} (E)‘._ . (32)
7=

Eq. (31) and Eq. (32) can be obtained from Eq. (20) by
simply setting
38

DY




assuming all derivatives are bounded, and then picking out the
terms with singular coefficients. 1In such a way, Kolos and

7 . £ Z == .o
Roothaan obtained, for the case ok = \ , cusp conditions

which are equivalent to Eq. (31) and Eq. (32).

B. Inter-particle Coordinates

The cusp conditions in inter-particle coordinates are readily
obtained from the confocal elliptic results by a chenge of
variables. TFor example, consider an N-electron, fixed-nuclei

diatomic molecule, and let

(@mj 0 amd O F O(Q) .

The (nonorthogonal) inter-particle distances, qu ard ng )
are given by \f"&= R(ﬁﬂ(.)/z and Y;P?-R(?r?,)/z_ . Changing to
these coordinates in Eq. (31) and Eq. (32), we cbtain the cusp

s . . *
conditions in the very simple form,

(2),., =& (@), - 6

L g Constant

C. Spherical Polar Coordinates
We can easily give the diatomic molecule cusp conditions
in spherical polar coordinates. Consider the example used in

* A corresponding equation at

ol and p in Eq. (33).

= O 1is obtained by interchanging

Vs
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art B above. Since the nuciei are firxed, we take the internuclear
P 3

axis to be the z axis in Eq. (17) and find that

(%%)wo: 2 Udeetn|@)y, - o
8, Constent '

We note that I must be spherically symmetric in the coordinates

of electron 1 in order for Eq. (34) to become as simple as Eq. (33).

IV. Probability Density Cusp Conditions

The cusp conditicns can be applied to the electron probability
density. The spinless electron probability demsity, Ia, s of
an N-electron atom or molecule in the fixed-nuclei approximation,

is defined by

/0,('.‘.)=J§*:‘27 dr,---dg, - (35)
P

Here dr‘.:_dx‘.Jw.JZ‘. , Wwith the coordinate system centered

on the nucleus ( & ) of interest. To obtain the cusp conditions
on lo' R wé begin with Eq. (15), the cusp conditions on E .
We note that in these coordinates f‘z: f“ , and in this
u:— Za( s where 2‘( is the charge

of nucleus of . We now substitute Eq. (15) into the definition

approximation, Z‘

of F‘ and use that fact that Z+Z‘=2 &7_ , for any



complex number, & . Then, the cusp conditions are specified

by P‘ itself,

P’

| - 22 ).

W@t - 555 YA'j B
puL) =0

f’z R"\/\/n,nﬂ(g‘atp')“ + 0 |,
where

n * X 0y seedv .
W8)J 2 VoY) ul s O
4= =-n 3
If n =0,

Ptz W} 1= 2 26 rARWa Y +0CE) | (o,

b

Thus, at ¥ = 0, the function

Wie = (P g=0

We now put Eq. (37) into the differentiated form of the cusp

conditions,




19

Here & \Mm contains angular terms from the y",‘ s

similar to those of Eq. (17), which will not generally be zero
for molecules.

However, for a fixed-nucleus atom, f% can always be chosen
invariant to inversion of the coordinates (even parity). Then,
since the parity of Yl‘l'l is (——l)‘l s F, will contain only YL’M
with even ,e. . Thus, VVL. is zero for this case,and we have

Steiner's3 result,
i') =-2% (‘0.) ‘
('ar. 20 “1 M=o (39)

For molecules, we can either use Eq. (38) or take the

spherical average of Eq. (37),

131((;) :‘T%TJP' ('.‘.)Jﬂ., I
M

and obtain, as Binge12 did,

Ay =W,,[I1-2 ZN]+ 0G*).

(}_é_.) = -2Z, (@)“Fo: -2 Za(((’l)r;:a.
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V. Cusp Conditions at the Coalescence of M Particles

Since the Coulomb potential is a two-particle potential, it
is clear that if an N-particle wave function ]E. satisfies the
cusp conditions (Eq. (15)) at the point of coalescence of each
pair of its particles, it removes gll singularities from the
Schrgdinger equation. Hence, if any set of the particles
coalesce, (H"'E)E will remain bounded.

However, we are not able to determine directly the form
which the exact solution will have near the point of coalescence
of three or more particles. Consider M particles (35 MﬁN)
close together (O < ‘Q‘ £E€E for (& L(j _‘.Ms and the other N-M

particles separated. Then, Eq. (4) becomes

[ szkv "'Z ZZ‘ + O(€°)]§ O. oy

k= I=dy

Since there is no coordinate system in which this equation is
separable, we are not able to solve it directly. However,
there are various forms for § which will satisfy the cusp
conditions (Eq. (15)) for each pair of the M particles.
Hence, we are led to define the M-particle cusp conditions
(for MZS ) as any conditions which insure that when M
particles coalesce, the two-particle cusp conditions are

satisfied for each pair of the M particles.




One of the simplest forms for § which satisfies this
requirement can be expressed as a product with each factor
satisfying a two-particle cusp condition. For example, a possible

form, for a I which does not have a node where the M
4

ot ioalos smalaces smis 1a
particles coalesce, would be

E(rt,'”lfd) =

M .
- éo ﬂ-z l+Z‘Z:‘/¢“JY}5 + rij'. g":j +O(Y‘C ')j ) (41)

Izi<q
where
Io; (1){;: o::: ﬁ (s rMM,' ** rﬂ) )
aséiisM
and

Here & is the center of mass of the M particles. Direct
substitution of Eq. (41) into Eq. (40) shows that the
singularities are removed.

Generalizations of cusp conditions of the form of Eq. (41)

are possible. For example, we can choose I and _b!.;_j. to be
[-]




any boundecd, continuous functions of all the variables, !:13"‘f!;V’

such that

(8),.. = @ -

14i¢jeM
léééj‘iM

and such that
2, 2
ZEO) Vk @,o ) YKE“'S ) and Vi L,

exist and are bounded for all k when the M particles coalesce.
Thus we are able to construct wave functions which suffice
to remove the singuisrities but do not necessarily have the

same form as the exact solution.

VI. Inclusion of Spin

The N-particle wave function ]i discussed in the previous
sections is a spatial wave function with no spin dependence. 1In
addition, no considevation was given to the Pauli Principle.

In order to be physiczlly acceptable, wave functions must be
eigenfunctions of spin, properly symmetrized with respect to

. o . 2,15
interchange of particles, However, it has been shown that

the exact, properly symmetrized, spin eigensolutions of
b 7 8y s SP > p)

22
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n
the Schrodinger equation can always be constructed by taking

proper linear combinations of N-particle spatial wave functions
times spin functions. Hence, if all the i ‘s used to construct
T satisfy the cusp conditions, T will satisfy the cusp

- *
conditions.
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